

‘py-droplets’ python package

The py-droplets python package provides methods and classes useful for
studying phase separation phenomena using phase field methods.

Contents

	Installation
	Installing from source
	Prerequisites

	Downloading the package

	Getting started
	Examples
	Basic droplets

	Plotting emulsions

	Analyze images

	Contributing code
	Structure of the package

	Extending functionality

	Coding style

	Running unit tests

	droplets package
	Subpackages
	droplets.tools package
	droplets.tools.spherical module

	droplets.droplet_tracks module

	droplets.droplets module

	droplets.emulsions module

	droplets.image_analysis module

	droplets.trackers module

Indices and tables

	Index

	Module Index

	Search Page

Installation

This py-droplets package is developed for python 3.9+ and should run on all
common platforms.
The code is tested under Linux, Windows, and macOS.

Since the package is available on pypi [https://pypi.org/project/py-droplets/],
the installation is in principle as simple as running

pip install py-droplets

In order to have all features of the package available, you might also want to
install the following optional packages:

pip install h5py pyfftw

Installing from source

Installing from source can be necessary if the pypi installation does not work
or if the latest source code should be installed from github.

Prerequisites

The code builds on other python packages, which need to be installed for
py-droplets to function properly.
The required packages are listed in the table below:

	Package

	Version

	Usage

	matplotlib

	>=3.1

	Visualizing results

	numpy

	>=1.22

	Array library used for storing data

	numba

	>=0.59

	Just-in-time compilation to accelerate numerics

	scipy

	>=1.4

	Miscellaneous scientific functions

	py-pde

	>=0.37

	Simulating partial differential equations

These package can be installed via your operating system’s package manager, e.g.
using macports, homebrew, conda, or
pip.
The package versions given above are minimal requirements, although
this is not tested systematically. Generally, it should help to install the
latest version of the package.
The py-pde package is available on pip, but if this is inconvenient the
package can also be installed from github sources, as described in its
documentation [https://py-pde.readthedocs.io/en/latest/installation.html#installing-from-source].

A small subset of the package will only be available if extra optional packages are
installed. Currently, this only concerns the h5py package for reading hdf files.

Downloading the package

The package can be simply checked out from
github.com/zwicker-group/py-droplets [https://github.com/zwicker-group/py-droplets].
To import the package from any python session, it might be convenient to include
the root folder of the package into the PYTHONPATH [https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH] environment variable.

This documentation can be built by calling the make html in the
docs folder.
The final documentation will be available in docs/build/html.
Note that a LaTeX documentation can be build using make latexpdf.

Getting started

	Examples
	Basic droplets

	Plotting emulsions

	Analyze images

	Contributing code
	Structure of the package

	Extending functionality

	Coding style

	Running unit tests

Examples

We here collect examples for using the package to demonstrate some of its
functionality.

Basic droplets

The basic droplet classes can be used as follows

from droplets import DiffuseDroplet, Emulsion, SphericalDroplet

construct two droplets
drop1 = SphericalDroplet(position=[0, 0], radius=2)
drop2 = DiffuseDroplet(position=[6, 8], radius=3, interface_width=1)

check whether they overlap
print(drop1.overlaps(drop2)) # prints False

construct an emulsion and query it
e = Emulsion([drop1, drop2])
e.get_size_statistics()

We first create two droplets represented by two different classes. The basic
class SphericalDroplet represents a droplet by its
position and radius, while the more advanced class
DiffuseDroplet also keeps track of the interface
width.
Finally, we combine the two droplets in an emulsion, which then allows further
analysis.

Plotting emulsions

To visualize an emulsions, one can simply use the
plot():

import numpy as np

from droplets import DiffuseDroplet, Emulsion

create 10 random droplets
droplets = [
 DiffuseDroplet(
 position=np.random.uniform(0, 100, 2),
 radius=np.random.uniform(5, 10),
 interface_width=1,
)
 for _ in range(10)
]

remove overlapping droplets in emulsion and plot it
emulsion = Emulsion(droplets)
emulsion.remove_overlapping()
emulsion.plot()

Note that the emulsion class can also keep track of the space in which droplets
are defined, e.g, the boundaries of a simulation grid.
For this, the Emulsion supports the grid
argument, which can for instance be an instance of
CartesianGrid.

Analyze images

[image: ../_images/emulsion.png]

An emulsion image

The package also allows analyzing images of emulsions like the one shown on the
right. The code below loads the image, locates the droplets, and then displays
some of their properties

from pathlib import Path

from pde.fields import ScalarField

from droplets.image_analysis import locate_droplets

img_path = Path(__file__).parent / "resources" / "emulsion.png"
field = ScalarField.from_image(img_path)
emulsion = locate_droplets(field)

visualize the result
emulsion.plot(field=field, fill=False, color="w")

Note that the determined positions and sizes of the droplets are only roughly
determined by default.
If more accurate data is desired,
locate_droplets() supports the refine
arguments, which fits the model image of droplet to the actual image to obtain
more accurate parameter estimates.

Contributing code

Structure of the package

The functionality of the droplets package is split into multiple modules.
In particular, we distinguish classes that deal with single droplets from those
classes that represent collections (emulsions).
The functions analyzing images are collected in a separate module.

Extending functionality

All code is build on a modular basis, making it easy to introduce new classes
that integrate with the rest of the package. For instance, it is simple to
define a droplet class that stores additional information by subclassing
SphericalDroplet.

Coding style

The coding style is enforced using isort [https://timothycrosley.github.io/isort/]
and black [https://black.readthedocs.io/]. Moreover, we use Google Style docstrings [https://github.com/google/styleguide/blob/gh-pages/pyguide.md#38-comments-and-docstrings],
which might be best learned by example [https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html].
The documentation, including the docstrings, are written using reStructuredText [https://de.wikipedia.org/wiki/ReStructuredText], with examples in the
following cheatsheet [https://github.com/ralsina/rst-cheatsheet/blob/master/rst-cheatsheet.rst].
To ensure the integrity of the code, we also try to provide many test functions,
which are typically contained in separate modules in sub-packages called
tests.
These tests can be ran using scripts in the tests subfolder in the root
folder.
This folder also contain a script tests_types.sh, which uses mypy
to check the consistency of the python type annotations.
We use these type annotations for additional documentation and they have also
already been useful for finding some bugs.

Running unit tests

The droplets package contains several unit tests, typically contained in
sub-module tests in the folder of a given module. These tests ensure that
basic functions work as expected, in particular when code is changed in future
versions. To run all tests, there are a few convenience scripts in the root
directory tests. The most basic script is tests_run.sh, which
uses pytest to run the tests in the sub-modules of the droplets
package. Clearly, the python package pytest needs to be installed. There
are also additional scripts that for instance run tests in parallel (need the
python package pytest-xdist installed), measure test coverage (need
package pytest-cov installed), and make simple performance measurements.
Moreover, there is a script test_types.sh, which uses mypy to
check the consistency of the python type annotations and there is a script
codestyle.sh, which checks the coding style.

Before committing a change to the code repository, it is good practice to run
the tests, check the type annotations, and the coding style with the scripts
described above.

droplets package

Functions and classes for analyzing emulsions and droplets

Subpackages

	droplets.tools package
	droplets.tools.spherical module

	droplets.droplet_tracks module

	droplets.droplets module

	droplets.emulsions module

	droplets.image_analysis module

	droplets.trackers module

droplets.tools package

	droplets.tools.spherical module

droplets.tools.spherical module

Module collecting functions for handling spherical geometry

The coordinate systems use the following convention for polar coordinates
\((r, \phi)\), where \(r\) is the radial coordinate and \(\phi\) is
the polar angle:

\[\begin{split}\begin{cases}
 x = r \cos(\phi) &\\
 y = r \sin(\phi) &
\end{cases}
\text{for} \; r \in [0, \infty] \;
\text{and} \; \phi \in [0, 2\pi)\end{split}\]

Similarly, for spherical coordinates \((r, \theta, \phi)\), where \(r\)
is the radial coordinate, \(\theta\) is the azimuthal angle, and
\(\phi\) is the polar angle, we use

\[\begin{split}\begin{cases}
 x = r \sin(\theta) \cos(\phi) &\\
 y = r \sin(\theta) \sin(\phi) &\\
 z = r \cos(\theta)
\end{cases}
\text{for} \; r \in [0, \infty], \;
\theta \in [0, \pi], \; \text{and} \;
\phi \in [0, 2\pi)\end{split}\]

The module also provides functions for handling spherical harmonics.
These spherical harmonics are described by the degree \(l\) and the order
\(m\) or, alternatively, by the mode \(k\). The relation between these
values is

\[k = l(l + 1) + m\]

and

\[\begin{split}l &= \text{floor}(\sqrt{k}) \\
m &= k - l(l + 1)\end{split}\]

We will use these indices interchangeably, although the mode \(k\) is
preferred internally. Note that we also consider axisymmetric spherical
harmonics, where the order is always zero and the degree \(l\) and the mode
\(k\) are thus identical.

	radius_from_volume

	Return the radius of a sphere with a given volume

	volume_from_radius

	Return the volume of a sphere with a given radius

	surface_from_radius

	Return the surface area of a sphere with a given radius

	radius_from_surface

	Return the radius of a sphere with a given surface area

	make_radius_from_volume_compiled

	Return a function calculating the radius of a sphere with a given volume

	make_volume_from_radius_compiled

	Return a function calculating the volume of a sphere with a given radius

	make_surface_from_radius_compiled

	Return a function calculating the surface area of a sphere

	points_cartesian_to_spherical

	Convert points from Cartesian to spherical coordinates

	points_spherical_to_cartesian

	Convert points from spherical to Cartesian coordinates

	polar_coordinates

	return polar coordinates associated with grid points

	spherical_index_k

	returns the mode k from the degree degree and order order

	spherical_index_lm

	returns the degree l and the order m from the mode k

	spherical_index_count

	return the number of modes for all indices <= l

	spherical_index_count_optimal

	checks whether the modes captures all orders for maximal degree

	spherical_harmonic_symmetric

	axisymmetric spherical harmonics with degree degree, so m=0.

	spherical_harmonic_real

	real spherical harmonics of degree l and order m

	spherical_harmonic_real_k

	real spherical harmonics described by mode k

	
make_radius_from_volume_compiled(dim)

	Return a function calculating the radius of a sphere with a given volume

	Parameters:

	dim (int [https://docs.python.org/3/library/functions.html#int]) – Dimension of the space

	Returns:

	A function that takes a volume and returns the radius

	Return type:

	function

	
make_radius_from_volume_nd_compiled()

	Return a function calculating the radius of a sphere with a given volume

	Returns:

	A function that calculate the radius from a volume and dimension

	Return type:

	function

	
make_surface_from_radius_compiled(dim)

	Return a function calculating the surface area of a sphere

	Parameters:

	dim (int [https://docs.python.org/3/library/functions.html#int]) – Dimension of the space

	Returns:

	A function that takes a radius and returns the surface area

	Return type:

	function

	
make_volume_from_radius_compiled(dim)

	Return a function calculating the volume of a sphere with a given radius

	Parameters:

	dim (int [https://docs.python.org/3/library/functions.html#int]) – Dimension of the space

	Returns:

	A function that takes a radius and returns the volume

	Return type:

	function

	
make_volume_from_radius_nd_compiled()

	Return a function calculating the volume of a sphere with a given radius

	Returns:

	A function that calculates the volume using a radius and dimension

	Return type:

	function

	
points_cartesian_to_spherical(points)

	Convert points from Cartesian to spherical coordinates

	Parameters:

	points (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Points in Cartesian coordinates

	Returns:

	Points (r, θ, φ) in spherical coordinates

	Return type:

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
points_spherical_to_cartesian(points)

	Convert points from spherical to Cartesian coordinates

	Parameters:

	points (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Points in spherical coordinates (r, θ, φ)

	Returns:

	Points in Cartesian coordinates

	Return type:

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
polar_coordinates(grid: GridBase, *, origin: np.ndarray | None [https://docs.python.org/3/library/constants.html#None] = None, ret_angle: Literal [https://docs.python.org/3/library/typing.html#typing.Literal][False] = False) → ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
polar_coordinates(grid: GridBase, *, origin: np.ndarray | None [https://docs.python.org/3/library/constants.html#None] = None, ret_angle: Literal [https://docs.python.org/3/library/typing.html#typing.Literal][True]) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], ...]

	return polar coordinates associated with grid points

	Parameters:

	
	grid (GridBase) – The grid whose cell coordinates are used.

	origin (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional) – Cartesian coordinates of the origin at which polar coordinates are anchored.

	ret_angle (bool [https://docs.python.org/3/library/functions.html#bool]) – Determines whether angles are returned alongside the distance. If False
only the distance to the origin is returned for each support point of the
grid. If True, the distance and angles are returned. For a 1d system
system, the angle is defined as the sign of the difference between the
point and the origin, so that angles can either be 1 or -1. For 2d
systems and 3d systems, polar coordinates and spherical coordinates are
used, respectively.

	Returns:

	Coordinates values in polar coordinates

	Return type:

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or tuple of ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
radius_from_surface(surface, dim)

	Return the radius of a sphere with a given surface area

	Parameters:

	
	surface (float or ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Surface area of the sphere

	dim (int [https://docs.python.org/3/library/functions.html#int]) – Dimension of the space

	Returns:

	Radius of the sphere

	Return type:

	float or ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
radius_from_volume(volume, dim)

	Return the radius of a sphere with a given volume

	Parameters:

	
	volume (float or ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Volume of the sphere

	dim (int [https://docs.python.org/3/library/functions.html#int]) – Dimension of the space

	Returns:

	Radius of the sphere

	Return type:

	float or ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
spherical_harmonic_real(degree, order, θ, φ)

	real spherical harmonics of degree l and order m

	Parameters:

	
	degree (int [https://docs.python.org/3/library/functions.html#int]) – Degree \(l\) of the spherical harmonics

	order (int [https://docs.python.org/3/library/functions.html#int]) – Order \(m\) of the spherical harmonics

	θ (float [https://docs.python.org/3/library/functions.html#float]) – Azimuthal angle (in \([0, \pi]\)) at which fucntion is evaluated.

	φ (float [https://docs.python.org/3/library/functions.html#float]) – Polar angle (in \([0, 2\pi]\)) at which function is evaluated.

	Returns:

	The value of the spherical harmonics

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
spherical_harmonic_real_k(k, θ, φ)

	real spherical harmonics described by mode k

	Parameters:

	
	k (int [https://docs.python.org/3/library/functions.html#int]) – Combined index determining the degree and order of the spherical harmonics

	θ (float [https://docs.python.org/3/library/functions.html#float]) – Azimuthal angle (in \([0, \pi]\)) at which fucntion is evaluated.

	φ (float [https://docs.python.org/3/library/functions.html#float]) – Polar angle (in \([0, 2\pi]\)) at which function is evaluated.

	Returns:

	The value of the spherical harmonics

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
spherical_harmonic_symmetric(degree, θ)

	axisymmetric spherical harmonics with degree degree, so m=0.

	Parameters:

	
	degree (int [https://docs.python.org/3/library/functions.html#int]) – Degree of the spherical harmonics

	θ (float [https://docs.python.org/3/library/functions.html#float]) – Azimuthal angle at which function is evaluated (in \([0, \pi]\))

	Returns:

	The value of the spherical harmonics

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
spherical_index_count(l)

	return the number of modes for all indices <= l

The returned value is one less than the maximal mode k required.

	Parameters:

	l (int [https://docs.python.org/3/library/functions.html#int]) – Maximal degree of the spherical harmonics

	Returns:

	The number of modes

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
spherical_index_count_optimal(k_count)

	checks whether the modes captures all orders for maximal degree

	Parameters:

	k_count (int [https://docs.python.org/3/library/functions.html#int]) – The number of modes considered

	Returns:

	indiciates whether k_count is optimally chosen.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
spherical_index_k(degree, order=0)

	returns the mode k from the degree degree and order order

	Parameters:

	
	degree (int [https://docs.python.org/3/library/functions.html#int]) – Degree \(l\) of the spherical harmonics

	order (int [https://docs.python.org/3/library/functions.html#int]) – Order \(m\) of the spherical harmonics

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if order < -degree or order > degree

	Returns:

	a combined index k

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
spherical_index_lm(k)

	returns the degree l and the order m from the mode k

	Parameters:

	k (int [https://docs.python.org/3/library/functions.html#int]) – The combined index for the spherical harmonics

	Returns:

	The degree l and order m of the spherical harmonics
assoicated with the combined index

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
surface_from_radius(radius, dim)

	Return the surface area of a sphere with a given radius

	Parameters:

	
	radius (float or ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Radius of the sphere

	dim (int [https://docs.python.org/3/library/functions.html#int]) – Dimension of the space

	Returns:

	Surface area of the sphere

	Return type:

	float or ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

droplets.droplet_tracks module

Classes representing the time evolution of droplets

	DropletTrack

	information about a single droplet over multiple time steps

	DropletTrackList

	a list of instances of DropletTrack

	
class DropletTrack(droplets=None, times=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

information about a single droplet over multiple time steps

	Parameters:

	
	emulsions (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of emulsions that describe this time course

	times (list [https://docs.python.org/3/library/stdtypes.html#list]) – Times associated with the emulsions

	
append(droplet, time=None)

	append a new droplet with a time code

	Parameters:

	
	droplet (droplets.droplets.SphericalDroplet) – The droplet to append

	time (float [https://docs.python.org/3/library/functions.html#float], optional) – The associated time point

	Return type:

	None

	
property data: np.ndarray | None [https://docs.python.org/3/library/constants.html#None]

	an array containing the data of the full track

	Type:

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property dim: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]

	return the space dimension of the droplets

	
property duration: float [https://docs.python.org/3/library/functions.html#float]

	total duration of the track

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
property end: float [https://docs.python.org/3/library/functions.html#float]

	last time point

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
property first: SphericalDroplet

	first droplet instance

	Type:

	SphericalDroplet

	
classmethod from_file(path)

	create droplet track by reading from file

	Parameters:

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path from which the data is read. This function assumes that the
data was written as an HDF5 file using to_file().

	Return type:

	DropletTrack

	
get_position(time)

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]: returns the droplet position at a specific time

	Parameters:

	time (float [https://docs.python.org/3/library/functions.html#float])

	Return type:

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
get_radii(smoothing=0)

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]: returns the droplet radius for each time point

	Parameters:

	smoothing (float [https://docs.python.org/3/library/functions.html#float]) – Determines the length scale for some gaussian smoothing of the
trajectory. The default value of zero disables smoothing.

	Return type:

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
get_trajectory(smoothing=0, *, attribute='position')

	return a the time-evolution of a droplet attribute (e.g., the position)

	Parameters:

	
	smoothing (float [https://docs.python.org/3/library/functions.html#float]) – Determines the scale for some gaussian smoothing of the trajectory.
The default value of zero disables smoothing.

	attribute (str [https://docs.python.org/3/library/stdtypes.html#str]) – The attribute to consider (default: “position”).

	Returns:

	
	An array giving the position of the droplet at each
	time instance

	Return type:

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
get_volumes(smoothing=0)

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]: returns the droplet volume for each time point

	Parameters:

	smoothing (float [https://docs.python.org/3/library/functions.html#float]) – Determines the volume scale for some gaussian smoothing of the
trajectory. The default value of zero disables smoothing.

	Return type:

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
items()

	iterate over all times and droplets, returning them in pairs

	
property last: SphericalDroplet

	last droplet instance

	Type:

	SphericalDroplet

	
plot(attribute='radius', smoothing=0, t_max=None, *args, title=None, filename=None, action='auto', ax_style=None, fig_style=None, ax=None, **kwargs)

	plot the time evolution of the droplet

	Parameters:

	
	attribute (str [https://docs.python.org/3/library/stdtypes.html#str]) – The attribute to plot. Typical values include radius and volume, but
others might be defined on the droplet class.

	smoothing (float [https://docs.python.org/3/library/functions.html#float]) – Determines the scale for some gaussian smoothing of the trajectory.
The default value of zero disables smoothing.

	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – Title of the plot. If omitted, the title might be chosen automatically.

	filename (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If given, the plot is written to the specified file.

	action (str [https://docs.python.org/3/library/stdtypes.html#str]) – Decides what to do with the final figure. If the argument is set to show,
matplotlib.pyplot.show() [https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show] will be called to show the plot. If the value
is none, the figure will be created, but not necessarily shown. The value
close closes the figure, after saving it to a file when filename is
given. The default value auto implies that the plot is shown if it is not
a nested plot call.

	ax_style (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary with properties that will be changed on the axis after the plot
has been drawn by calling matplotlib.pyplot.setp(). A special item i
this dictionary is use_offset, which is flag that can be used to control
whether offset are shown along the axes of the plot.

	fig_style (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary with properties that will be changed on the figure after the plot
has been drawn by calling matplotlib.pyplot.setp(). For instance,
using fig_style={‘dpi’: 200} increases the resolution of the figure.

	ax (matplotlib.axes.Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes]) – Figure axes to be used for plotting. The special value “create” creates a
new figure, while “reuse” attempts to reuse an existing figure, which is
the default.

	**kwargs – All remaining parameters are forwarded to the ax.plot method. For
example, passing color=None, will use different colors for different
droplets.

	t_max (float [https://docs.python.org/3/library/functions.html#float] | None)

	Returns:

	Information about the plot

	Return type:

	PlotReference

	
plot_positions(grid=None, arrow=True, *args, title=None, filename=None, action='auto', ax_style=None, fig_style=None, ax=None, **kwargs)

	plot the droplet track

	Parameters:

	
	grid (GridBase, optional) – The grid on which the droplets are defined. If given, periodic boundary
conditions can be respected in the plotting.

	arrow (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Flag determining whether an arrow head is shown to indicate the
direction of the droplet drift.

	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – Title of the plot. If omitted, the title might be chosen automatically.

	filename (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If given, the plot is written to the specified file.

	action (str [https://docs.python.org/3/library/stdtypes.html#str]) – Decides what to do with the final figure. If the argument is set to show,
matplotlib.pyplot.show() [https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show] will be called to show the plot. If the value
is none, the figure will be created, but not necessarily shown. The value
close closes the figure, after saving it to a file when filename is
given. The default value auto implies that the plot is shown if it is not
a nested plot call.

	ax_style (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary with properties that will be changed on the axis after the plot
has been drawn by calling matplotlib.pyplot.setp(). A special item i
this dictionary is use_offset, which is flag that can be used to control
whether offset are shown along the axes of the plot.

	fig_style (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary with properties that will be changed on the figure after the plot
has been drawn by calling matplotlib.pyplot.setp(). For instance,
using fig_style={‘dpi’: 200} increases the resolution of the figure.

	ax (matplotlib.axes.Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes]) – Figure axes to be used for plotting. The special value “create” creates a
new figure, while “reuse” attempts to reuse an existing figure, which is
the default.

	**kwargs – Additional keyword arguments are passed to the matplotlib plot
function to affect the appearance. For example, passing color=None,
will use different colors for different droplets.

	Returns:

	Information about the plot

	Return type:

	PlotReference

	
property start: float [https://docs.python.org/3/library/functions.html#float]

	first time point

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
time_overlaps(other)

	determine whether two DropletTrack instances overlaps in time

	Parameters:

	other (DropletTrack) – The other droplet track

	Returns:

	True when both tracks contain droplets at the same time step

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
to_file(path, info=None)

	store data in hdf5 file

The data can be read using the classmethod DropletTrack.from_file().

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to which the data is written as an HDF5 file.

	info (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Additional data stored alongside the droplet track list

	Return type:

	None

	
class DropletTrackList(iterable=(), /)

	Bases: list [https://docs.python.org/3/library/stdtypes.html#list]

a list of instances of DropletTrack

	
classmethod from_emulsion_time_course(time_course, *, method='overlap', grid=None, progress=False, **kwargs)

	obtain droplet tracks from an emulsion time course

	Parameters:

	
	time_course (droplets.emulsions.EmulsionTimeCourse) – A collection of temporally arranged emulsions

	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – The method used for tracking droplet identities. Possible methods are
“overlap” (adding droplets that overlap with those in previous frames)
and “distance” (matching droplets to minimize center-to-center
distances).

	grid (GridBase) – The grid on which the droplets are defined, which is necessary if
periodic boundary conditions should be respected for measuring distances

	progress (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to show the progress of the process.

	**kwargs – Additional parameters for the tracking algorithm. Currently, one can
only specify a maximal distance (using max_dist) for the “distance”
method.

	Returns:

	the resulting droplet tracks

	Return type:

	DropletTrackList

	
classmethod from_file(path)

	create droplet track list by reading file

	Parameters:

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path from which the data is read. This function assumes that the
data was written as an HDF5 file using to_file().

	Returns:

	an instance describing the droplet track list

	Return type:

	DropletTrackList

	
classmethod from_storage(storage, *, method='overlap', refine=False, num_processes=1, progress=None)

	obtain droplet tracks from stored scalar field data

This method first determines an emulsion time course and than collects tracks by
tracking droplets.

	Parameters:

	
	storage (StorageBase) – The phase fields for many time instances

	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – The method used for tracking droplet identities. Possible methods are
“overlap” (adding droplets that overlap with those in previous frames)
and “distance” (matching droplets to minimize center-to-center
distances).

	refine (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag determining whether the droplet properties should be refined
using fitting. This is a potentially slow procedure.

	num_processes (int [https://docs.python.org/3/library/functions.html#int] or "auto") – Number of processes used for the refinement. If set to “auto”, the
number of processes is choosen automatically.

	progress (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to show the progress of the process. If None, the progress is
not shown, except for the first step if refine is True.

	Returns:

	the resulting droplet tracks

	Return type:

	DropletTrackList

	
plot(attribute='radius', *args, title=None, filename=None, action='auto', ax_style=None, fig_style=None, ax=None, **kwargs)

	plot the time evolution of all droplets

	Parameters:

	
	attribute (str [https://docs.python.org/3/library/stdtypes.html#str]) – The attribute to plot. Typical values include radius and
volume, but others might be defined on the droplet class.

	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – Title of the plot. If omitted, the title might be chosen automatically.

	filename (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If given, the plot is written to the specified file.

	action (str [https://docs.python.org/3/library/stdtypes.html#str]) – Decides what to do with the final figure. If the argument is set to show,
matplotlib.pyplot.show() [https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show] will be called to show the plot. If the value
is none, the figure will be created, but not necessarily shown. The value
close closes the figure, after saving it to a file when filename is
given. The default value auto implies that the plot is shown if it is not
a nested plot call.

	ax_style (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary with properties that will be changed on the axis after the plot
has been drawn by calling matplotlib.pyplot.setp(). A special item i
this dictionary is use_offset, which is flag that can be used to control
whether offset are shown along the axes of the plot.

	fig_style (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary with properties that will be changed on the figure after the plot
has been drawn by calling matplotlib.pyplot.setp(). For instance,
using fig_style={‘dpi’: 200} increases the resolution of the figure.

	ax (matplotlib.axes.Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes]) – Figure axes to be used for plotting. The special value “create” creates a
new figure, while “reuse” attempts to reuse an existing figure, which is
the default.

	**kwargs – Additional keyword arguments are passed to the matplotlib plot
function to affect the appearance. The special value color=”cycle”
implies that the default color cycle is used for the tracks, using
different colors for different tracks.

	Returns:

	Information about the plot

	Return type:

	PlotReference

	
plot_positions(*args, title=None, filename=None, action='auto', ax_style=None, fig_style=None, ax=None, **kwargs)

	plot all droplet tracks

	Parameters:

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – Title of the plot. If omitted, the title might be chosen automatically.

	filename (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If given, the plot is written to the specified file.

	action (str [https://docs.python.org/3/library/stdtypes.html#str]) – Decides what to do with the final figure. If the argument is set to show,
matplotlib.pyplot.show() [https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show] will be called to show the plot. If the value
is none, the figure will be created, but not necessarily shown. The value
close closes the figure, after saving it to a file when filename is
given. The default value auto implies that the plot is shown if it is not
a nested plot call.

	ax_style (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary with properties that will be changed on the axis after the plot
has been drawn by calling matplotlib.pyplot.setp(). A special item i
this dictionary is use_offset, which is flag that can be used to control
whether offset are shown along the axes of the plot.

	fig_style (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary with properties that will be changed on the figure after the plot
has been drawn by calling matplotlib.pyplot.setp(). For instance,
using fig_style={‘dpi’: 200} increases the resolution of the figure.

	ax (matplotlib.axes.Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes]) – Figure axes to be used for plotting. The special value “create” creates a
new figure, while “reuse” attempts to reuse an existing figure, which is
the default.

	**kwargs – Additional keyword arguments are passed to the matplotlib plot
function to affect the appearance.

	Returns:

	Information about the plot

	Return type:

	PlotReference

	
remove_short_tracks(min_duration=0)

	remove tracks that a shorter than a minimal duration

	Parameters:

	min_duration (float [https://docs.python.org/3/library/functions.html#float]) – The minimal duration a droplet track must have in order to be retained.
This is measured in actual time and not in the number of time steps
stored in the track.

	Return type:

	None

	
to_file(path, info=None)

	store data in hdf5 file

The data can be read using the classmethod DropletTrackList.from_file().

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to which the data is written as an HDF5 file.

	info (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Additional data stored alongside the droplet track list

	Return type:

	None

droplets.droplets module

Classes representing (perturbed) droplets in various dimensions

The classes differ in what features of a droplet they track. In the simplest case, only
the position and radius of a spherical droplet are stored. Other classes additionally
keep track of the interfacial width or shape perturbations (of various degrees).

	SphericalDroplet

	Represents a single, spherical droplet

	DiffuseDroplet

	Represents a single, spherical droplet with a diffuse interface

	PerturbedDroplet2D

	Represents a single droplet in two dimensions with a perturbed shape

	PerturbedDroplet3D

	Represents a single droplet in three dimensions with a perturbed shape

	PerturbedDroplet3DAxisSym

	Represents a droplet axisymmetrically perturbed shape in three dimensions

Inheritance structure of the classes:

[image: Inheritance diagram of droplets.droplets]

The details of the classes are explained below:

	
class DiffuseDroplet(position, radius, interface_width=None)

	Bases: SphericalDroplet

Represents a single, spherical droplet with a diffuse interface

	Parameters:

	
	position (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Position of the droplet center

	radius (float [https://docs.python.org/3/library/functions.html#float]) – Radius of the droplet

	interface_width (float [https://docs.python.org/3/library/functions.html#float], optional) – Width of the interface

	
data: recarray [https://numpy.org/doc/stable/reference/generated/numpy.recarray.html#numpy.recarray]

	

	
property data_bounds: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

	lower and upper bounds on the parameters

	Type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
classmethod get_dtype(**kwargs)

	determine the dtype representing this droplet class

	Parameters:

	position (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The position vector of the droplet, determining the space dimension.

	Returns:

	the (structured) dtype associated with this class

	Return type:

	numpy.dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype]

	
property interface_width: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None]

	the width of the interface of this droplet

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
class PerturbedDroplet2D(position, radius, interface_width=None, amplitudes=None)

	Bases: PerturbedDropletBase

Represents a single droplet in two dimensions with a perturbed shape

The shape is described using the distance \(R(\phi)\) of the interface from the
position, which is a function of the polar angle \(\phi\). This function is
expressed as a truncated series of harmonics:

\[R(\phi) = R_0 + R_0\sum_{n=1}^N \left[\epsilon^{(1)}_n \sin(n \phi)
 + \epsilon^{(2)}_n \cos(n \phi) \right]\]

where \(N\) is the number of perturbation modes considered, which is given by
half the length of the amplitudes array. Consequently, amplitudes should always
be an even number, to consider both sin and cos terms.

	Parameters:

	
	position (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Position of the droplet center

	radius (float [https://docs.python.org/3/library/functions.html#float]) – Radius of the droplet

	interface_width (float [https://docs.python.org/3/library/functions.html#float], optional) – Width of the interface

	amplitudes (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – (dimensionless) perturbation amplitudes
\(\{\epsilon^{(1)}_1, \epsilon^{(2)}_1, \epsilon^{(1)}_2,
\epsilon^{(2)}_2, \epsilon^{(1)}_3, \epsilon^{(2)}_3, \dots \}\).
The length of the array needs to be even to capture perturbations of the
highest mode consistently.

	
data: recarray [https://numpy.org/doc/stable/reference/generated/numpy.recarray.html#numpy.recarray]

	

	
dim = 2

	

	
interface_curvature(φ)

	calculates the mean curvature of the interface of the droplet

For simplicity, the effect of the perturbations are only included to
linear order in the perturbation amplitudes \(\epsilon^{(1/2)}_n\).

	Parameters:

	φ (float or ndarray) – The angle in the polar coordinate system that describing the interface

	Returns:

	Array with curvature at the interfacial points associated with each angle φ

	Return type:

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
interface_distance(φ)

	calculates the distance of the droplet interface to the origin

	Parameters:

	φ (float or ndarray) – The angle in the polar coordinate system that describing the interface

	Returns:

	Array with distances of the interfacial points associated with each angle φ

	Return type:

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
interface_position(φ)

	calculates the position of the interface of the droplet

	Parameters:

	φ (float or ndarray) – The angle in the polar coordinate system that describing the interface

	Returns:

	Array with coordinates of interfacial points associated with each angle φ

	Return type:

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property surface_area: float [https://docs.python.org/3/library/functions.html#float]

	surface area of the droplet

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
property surface_area_approx: float [https://docs.python.org/3/library/functions.html#float]

	surface area of the droplet (quadratic in amplitudes)

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
property volume: float [https://docs.python.org/3/library/functions.html#float]

	volume of the droplet

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
class PerturbedDroplet3D(position, radius, interface_width=None, amplitudes=None)

	Bases: PerturbedDropletBase

Represents a single droplet in three dimensions with a perturbed shape

The shape is described using the distance \(R(\theta, \phi)\) of the interface
from the origin as a function of the azimuthal angle \(\theta\) and the polar
angle \(\phi\). This function is developed as a truncated series of spherical
harmonics \(Y_{l,m}(\theta, \phi)\):

\[R(\theta, \phi) = R_0 \left[1 + \sum_{l=1}^{N_l}\sum_{m=-l}^l
 \epsilon_{l,m} Y_{l,m}(\theta, \phi) \right]\]

where \(N_l\) is the number of perturbation modes considered, which is deduced
from the length of the amplitudes array.

	Parameters:

	
	position (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Position of the droplet center

	radius (float [https://docs.python.org/3/library/functions.html#float]) – Radius of the droplet

	interface_width (float [https://docs.python.org/3/library/functions.html#float], optional) – Width of the interface

	amplitudes (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Perturbation amplitudes \(\epsilon_{l,m}\). Note that the zero-th
mode, which would only change the radius, is skipped. Consequently, the
length of the array needs to be 0, 3, 8, 15, 24, … to capture
perturbations of the highest mode consistently.

	
data: recarray [https://numpy.org/doc/stable/reference/generated/numpy.recarray.html#numpy.recarray]

	

	
dim = 3

	

	
interface_curvature(θ, φ=None)

	calculates the mean curvature of the interface of the droplet

For simplicity, the effect of the perturbations are only included to
linear order in the perturbation amplitudes \(\epsilon_{l,m}\).

	Parameters:

	
	θ (float or ndarray) – Azimuthal angle (in \([0, \pi]\))

	φ (float or ndarray) – Polar angle (in \([0, 2\pi]\)); 0 if omitted

	Returns:

	Array with curvature at the interfacial points associated with the angles

	Return type:

	np.ndarray

	
interface_distance(θ, φ=None)

	calculates the distance of the droplet interface to the origin

	Parameters:

	
	θ (float or ndarray) – Azimuthal angle (in \([0, \pi]\))

	φ (float or ndarray) – Polar angle (in \([0, 2\pi]\)); 0 if omitted

	Returns:

	Array with distances of the interfacial points associated with the angles

	Return type:

	np.ndarray

	
interface_position(θ, φ=None)

	calculates the position of the interface of the droplet

	Parameters:

	
	θ (float or ndarray) – Azimuthal angle (in \([0, \pi]\))

	φ (float or ndarray) – Polar angle (in \([0, 2\pi]\)); 0 if omitted

	Returns:

	Array with coordinates of the interfacial points associated with the angles

	Return type:

	np.ndarray

	
property volume: float [https://docs.python.org/3/library/functions.html#float]

	volume of the droplet (determined numerically)

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
property volume_approx: float [https://docs.python.org/3/library/functions.html#float]

	approximate volume to linear order in the perturbation

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
class PerturbedDroplet3DAxisSym(position, radius, interface_width=None, amplitudes=None)

	Bases: PerturbedDropletBase

Represents a droplet axisymmetrically perturbed shape in three dimensions

The shape is described using the distance \(R(\theta)\) of the interface from
the origin as a function of the azimuthal angle \(\theta\), while polar symmetry
is assumed. This function is developed as a truncated series of spherical harmonics
\(Y_{l,m}(\theta, 0)\):

\[R(\theta) = R_0 \left[1 + \sum_{l=1}^{N_l}
 \epsilon_{l} Y_{l,0}(\theta, 0) \right]\]

where \(N_l\) is the number of perturbation modes considered, which is deduced
from the length of the amplitudes array.

	Parameters:

	
	position (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Position of the droplet center

	radius (float [https://docs.python.org/3/library/functions.html#float]) – Radius of the droplet

	interface_width (float [https://docs.python.org/3/library/functions.html#float], optional) – Width of the interface

	amplitudes (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The amplitudes of the perturbations

	
check_data()

	method that checks the validity and consistency of self.data

	
data: recarray [https://numpy.org/doc/stable/reference/generated/numpy.recarray.html#numpy.recarray]

	

	
dim = 3

	

	
interface_curvature(θ)

	calculates the mean curvature of the interface of the droplet

For simplicity, the effect of the perturbations are only included to
linear order in the perturbation amplitudes \(\epsilon_{l,m}\).

	Parameters:

	θ (float or ndarray) – Azimuthal angle (in \([0, \pi]\))

	Returns:

	Array with curvature at the interfacial points associated with the angles

	Return type:

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
interface_distance(θ)

	calculates the distance of the droplet interface to the origin

	Parameters:

	θ (float or ndarray) – Azimuthal angle (in \([0, \pi]\))

	Returns:

	Array with distances of the interfacial points associated with the angles

	Return type:

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property volume_approx: float [https://docs.python.org/3/library/functions.html#float]

	approximate volume to linear order in the perturbation

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
class SphericalDroplet(position, radius)

	Bases: DropletBase

Represents a single, spherical droplet

	Parameters:

	
	position (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Position of the droplet center

	radius (float [https://docs.python.org/3/library/functions.html#float]) – Radius of the droplet

	
property bbox: Cuboid

	bounding box of the droplet

	Type:

	Cuboid

	
check_data()

	method that checks the validity and consistency of self.data

	
data: recarray [https://numpy.org/doc/stable/reference/generated/numpy.recarray.html#numpy.recarray]

	

	
property data_bounds: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

	lower and upper bounds on the parameters

	Type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
property dim: int [https://docs.python.org/3/library/functions.html#int]

	the spatial dimension this droplet is embedded in

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
classmethod from_volume(position, volume)

	Construct a droplet from given volume instead of radius

	Parameters:

	
	position (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Center of the droplet

	volume (float [https://docs.python.org/3/library/functions.html#float]) – Volume of the droplet

	interface_width (float [https://docs.python.org/3/library/functions.html#float], optional) – Width of the interface

	
classmethod get_dtype(**kwargs)

	determine the dtype representing this droplet class

	Parameters:

	position (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The position vector of the droplet, determining space dimension.

	Returns:

	the (structured) dtype associated with this class

	Return type:

	numpy.dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype]

	
get_phase_field(grid, *, vmin=0, vmax=1, label=None)

	Creates an image of the droplet on the grid

	Parameters:

	
	grid (GridBase) – The grid used for discretizing the droplet phase field

	vmin (float [https://docs.python.org/3/library/functions.html#float]) – Minimal value the phase field will attain (far away from droplet)

	vmax (float [https://docs.python.org/3/library/functions.html#float]) – Maximal value the phase field will attain (inside the droplet)

	label (str [https://docs.python.org/3/library/stdtypes.html#str]) – The label associated with the returned scalar field

	Returns:

	A scalar field
representing the droplet

	Return type:

	ScalarField

	
get_triangulation(resolution=1)

	obtain a triangulated shape of the droplet surface

	Parameters:

	resolution (float [https://docs.python.org/3/library/functions.html#float]) – The length of a typical triangulation element. This affects the
resolution of the triangulation.

	Returns:

	A dictionary containing information about the triangulation. The exact
details depend on the dimension of the problem.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
property interface_curvature: float [https://docs.python.org/3/library/functions.html#float]

	the mean curvature of the interface of the droplet

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
interface_position(*args)

	calculates the position of the interface of the droplet

	Parameters:

	*args (float or ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The angles identifying the interface points. For 2d droplets, this is
simply the angle in polar coordinates. For 3d droplets, both the
azimuthal angle θ (in \([0, \pi]\)) and the polar angle φ (in
\([0, 2\pi]\)) need to be specified.

	Returns:

	An array with the coordinates of the interfacial
points associated with each angle given by φ.

	Return type:

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the dimension of the space is not 2

	
overlaps(other, grid=None)

	determine whether another droplet overlaps with this one

Note that this function so far only compares the distances of the droplets to
their radii, which does not respect perturbed droplets correctly.

	Parameters:

	
	other (SphericalDroplet) – instance of the other droplet

	grid (GridBase) – grid that determines how distances are measured, which is for instance
important to respect periodic boundary conditions. If omitted, an
Eucledian distance is assumed.

	Returns:

	whether the droplets overlap or not

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
plot(value=None, *args, title=None, filename=None, action='auto', ax_style=None, fig_style=None, ax=None, **kwargs)

	Plot the droplet

	Parameters:

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – Title of the plot. If omitted, the title might be chosen automatically.

	filename (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If given, the plot is written to the specified file.

	action (str [https://docs.python.org/3/library/stdtypes.html#str]) – Decides what to do with the final figure. If the argument is set to show,
matplotlib.pyplot.show() [https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show] will be called to show the plot. If the value
is none, the figure will be created, but not necessarily shown. The value
close closes the figure, after saving it to a file when filename is
given. The default value auto implies that the plot is shown if it is not
a nested plot call.

	ax_style (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary with properties that will be changed on the axis after the plot
has been drawn by calling matplotlib.pyplot.setp(). A special item i
this dictionary is use_offset, which is flag that can be used to control
whether offset are shown along the axes of the plot.

	fig_style (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary with properties that will be changed on the figure after the plot
has been drawn by calling matplotlib.pyplot.setp(). For instance,
using fig_style={‘dpi’: 200} increases the resolution of the figure.

	ax (matplotlib.axes.Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes]) – Figure axes to be used for plotting. The special value “create” creates a
new figure, while “reuse” attempts to reuse an existing figure, which is
the default.

	value (callable) – Sets the color of the droplet. This could be either a matplotlib color [https://matplotlib.org/stable/tutorials/colors/colors.html] or a
function that takes the droplet instance and returns a color in which
this droplet is drawn. If given, it overwrites the color argument.

	**kwargs – Additional keyword arguments are passed to the class that creates the
patch that represents the droplet. For instance, to only draw the
outlines of the droplets, you may need to supply fill=False.

	Returns:

	Information about the plot

	Return type:

	PlotReference

	
property position: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	the position of the droplet

	Type:

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property radius: float [https://docs.python.org/3/library/functions.html#float]

	the radius of the droplet

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
property surface_area: float [https://docs.python.org/3/library/functions.html#float]

	surface area of the droplet

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
property volume: float [https://docs.python.org/3/library/functions.html#float]

	volume of the droplet

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

droplets.emulsions module

Classes describing collections of droplets, i.e. emulsions, and their temporal dynamics.

	Emulsion

	class representing a collection of droplets in a common system

	EmulsionTimeCourse

	represents emulsions as a function of time

	
class Emulsion(droplets=None, *, copy=True, dtype=None, force_consistency=False, grid=None)

	Bases: list [https://docs.python.org/3/library/stdtypes.html#list]

class representing a collection of droplets in a common system

	Parameters:

	
	droplets (Iterable[SphericalDroplet] | None) – A list or generator of instances of
SphericalDroplet.

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to make a copy of the droplet or not

	dtype (DTypeLike) – The dtype describing what droplets are stored in the emulsion. Providing
this is usually only necessary for creating empty emulsions. Instead of
a dtype, an array or an example droplet can also be supplied.

	force_consistency (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to ensure that all droplets are of the same type, i.e., their
data is described by the same dtype and matches dtype if given.

	grid (GridBase | None)

	
append(droplet, *, copy=True, force_consistency=False)

	add a droplet to the emulsion

	Parameters:

	
	droplet (droplets.dropelts.SphericalDroplet) – Droplet to add to the emulsion

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to make a copy of the droplet or not

	force_consistency (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to ensure that all droplets are of the same type

	Return type:

	None

	
property bbox: Cuboid

	bounding box of the emulsion

	Type:

	Cuboid

	
copy(min_radius=-1)

	return a copy of this emulsion

	Parameters:

	min_radius (float [https://docs.python.org/3/library/functions.html#float]) – The minimal radius of the droplets that are retained. Droplets with
exactly min_radius are removed, so min_radius == 0 can be used to
filter vanished droplets.

	Return type:

	Emulsion

	
property data: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	an array containing the data of the full emulsion

Warning

This requires all droplets to be of the same class. The returned array is
a copy of all the data and writing to it will thus not change the underlying
data.

	Type:

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property dim: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]

	dimensionality of space in which droplets are defined

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
classmethod empty(droplet)

	create empty emulsion with particular droplet type

	Parameters:

	droplet (SphericalDroplet) – An example for a droplet, which defines the type of

	Returns:

	The empty emulsion

	Return type:

	Emulsion

	
extend(droplets, *, copy=True, force_consistency=False)

	add many droplets to the emulsion

	Parameters:

	
	droplet (list of droplets.dropelts.SphericalDroplet) – List of droplets to add to the emulsion

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to make a copy of the droplet or not

	force_consistency (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to ensure that all droplets are of the same type

	droplets (Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][SphericalDroplet])

	Return type:

	None

	
classmethod from_file(path)

	create emulsion by reading file

	Parameters:

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path from which the data is read. This function assumes that the
data was written as an HDF5 file using to_file().

	Returns:

	The emulsion read from the file

	Return type:

	Emulsion

	
classmethod from_random(num, grid_or_bounds, radius, *, remove_overlapping=True, droplet_class=<class 'droplets.droplets.SphericalDroplet'>, rng=None)

	Create an emulsion with random droplets

	Parameters:

	
	num (int [https://docs.python.org/3/library/functions.html#int]) – The (maximal) number of droplets to generate

	grid_or_bounds (GridBase or list of float tuples) – Determines the space in which droplets are placed. This is either a
GridBase describing the geometry or a sequence
of tuples with lower and upper bounds for each axes, so the length of
the sequence determines the space dimension.

	radius (float [https://docs.python.org/3/library/functions.html#float] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of float [https://docs.python.org/3/library/functions.html#float]) – Radius of the droplets that are created. If two numbers are given, they
specify the bounds of a uniform distribution from which the radius of
each individual droplet is chosen.

	remove_overlapping (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag determining whether overlapping droplets are removed. If enabled,
the resulting element might contain less thatn num droplets.

	droplet_class (SphericalDroplet) – The class that is used to create droplets.

	rng (Generator [https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.Generator]) – Random number generator (default: default_rng() [https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.default_rng])

	Returns:

	The emulsion containing the random droplets

	Return type:

	Emulsion

	
get_linked_data()

	link the data of all droplets in a single array

	Returns:

	
	The array containing all droplet data. If entries in
	this array are modified, it will be reflected in the droplets.

	Return type:

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
get_neighbor_distances(subtract_radius=False)

	calculates the distance of each droplet to its nearest neighbor

Warning

This function does not take periodic boundary conditions into account.

	Parameters:

	subtract_radius (bool [https://docs.python.org/3/library/functions.html#bool]) – Determines whether to subtract the radius from the distance, i.e.,
whether to return the distance between the surfaces instead of the
positions

	Returns:

	a vector with a distance for each droplet

	Return type:

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
get_pairwise_distances(subtract_radius=False, grid=None)

	return the pairwise distance between droplets

	Parameters:

	
	subtract_radius (bool [https://docs.python.org/3/library/functions.html#bool]) – Determines whether to subtract the radius from the distance, i.e.,
whether to return the distance between the surfaces instead of the
positions

	grid (GridBase) – The grid on which the droplets are defined, which is necessary if
periodic boundary conditions should be respected for measuring distances

	Returns:

	a matrix with the distances between all droplets

	Return type:

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
get_phasefield(grid, label=None)

	create a phase field representing a list of droplets

	Parameters:

	
	grid (pde.grids.base.GridBase) – The grid on which the phase field is created. If omitted, the grid
associated with the emulsion is used.

	label (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Optional label for the returned scalar field

	Returns:

	the actual phase field

	Return type:

	ScalarField

	
get_size_statistics(incl_vanished=True)

	determine size statistics of the current emulsion

	Parameters:

	incl_vanished (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to include droplets with vanished radii

	Returns:

	a dictionary with various size statistics

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
property interface_width: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None]

	the average interface width across all droplets

This averages the interface widths of the individual droplets weighted by their
surface area, i.e., the amount of interface.

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
plot(field=None, image_args=None, repeat_periodically=True, color_value=None, cmap=None, norm=None, colorbar=True, *args, title=None, filename=None, action='auto', ax_style=None, fig_style=None, ax=None, **kwargs)

	plot the current emulsion together with a corresponding field

If the emulsion is defined in a 3d geometry, only a projection on the first two
axes is shown.

	Parameters:

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – Title of the plot. If omitted, the title might be chosen automatically.

	filename (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If given, the plot is written to the specified file.

	action (str [https://docs.python.org/3/library/stdtypes.html#str]) – Decides what to do with the final figure. If the argument is set to show,
matplotlib.pyplot.show() [https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show] will be called to show the plot. If the value
is none, the figure will be created, but not necessarily shown. The value
close closes the figure, after saving it to a file when filename is
given. The default value auto implies that the plot is shown if it is not
a nested plot call.

	ax_style (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary with properties that will be changed on the axis after the plot
has been drawn by calling matplotlib.pyplot.setp(). A special item i
this dictionary is use_offset, which is flag that can be used to control
whether offset are shown along the axes of the plot.

	fig_style (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary with properties that will be changed on the figure after the plot
has been drawn by calling matplotlib.pyplot.setp(). For instance,
using fig_style={‘dpi’: 200} increases the resolution of the figure.

	ax (matplotlib.axes.Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes]) – Figure axes to be used for plotting. The special value “create” creates a
new figure, while “reuse” attempts to reuse an existing figure, which is
the default.

	field (pde.fields.scalar.ScalarField) – provides the phase field that is shown as a background

	image_args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – additional arguments determining how the phase field in the
background is plotted. Acceptable arguments are described in
plot().

	repeat_periodically (bool [https://docs.python.org/3/library/functions.html#bool]) – flag determining whether droplets are shown on both sides of
periodic boundary conditions. This option can slow down plotting

	color_value (callable) – Function used to determine the color of a droplet. The function is
called with individual droplet objects and must return a single scalar
value, which is then mapped to a color using the colormap given by
cmap and a suitable normalization given by norm.

	cmap (str or Colormap [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Colormap.html#matplotlib.colors.Colormap]) – The colormap used to map normalized data values to RGBA colors.

	norm (Normalize [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Normalize.html#matplotlib.colors.Normalize]) – The normalizing object which scales data, typically into the interval
[0, 1]. If None, norm defaults to a colors.Normalize object which
maps the range of values obtained from color_value to [0, 1].

	colorbar (bool [https://docs.python.org/3/library/functions.html#bool] or str [https://docs.python.org/3/library/stdtypes.html#str]) – Determines whether a colorbar is shown when color_value is supplied.
If a string is given, it is used as a label for the colorbar.

	**kwargs – Additional keyword arguments are passed to the function creating the
patch that represents the droplet. For instance, to only draw the
outlines of the droplets, you may need to supply fill=False.

	Returns:

	Information about the plot

	Return type:

	PlotReference

	
remove_overlapping(min_distance=0, grid=None)

	remove all droplets that are overlapping

If a pair of overlapping droplets was found, the smaller one of these is removed
from the current emulsion. This method modifies the emulsion in place and thus
does not return anything.

	Parameters:

	
	min_distance (float [https://docs.python.org/3/library/functions.html#float]) – The minimal distance droplets need to be apart. The default value of 0
corresponds to just remove overlapping droplets. Larger values ensure
that droplets keep a distance, while negative values allow for some
overlap.

	grid (GridBase) – The grid on which the droplets are defined, which is necessary if
periodic boundary conditions should be respected for measuring distances

	Return type:

	None

	
remove_small(min_radius=-inf)

	remove droplets that are very small

The emulsions is modified in-place.

	Parameters:

	min_radius (float [https://docs.python.org/3/library/functions.html#float]) – The minimal radius of the droplets that are retained. Droplets with
exactly min_radius are removed, so min_radius == 0 can be used to
filter vanished droplets. The default value does not remove any droplets

	Return type:

	None

	
to_file(path)

	store data in hdf5 file

The data can be read using the classmethod Emulsion.from_file().

	Parameters:

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to which the data is written as an HDF5 file.

	Return type:

	None

	
property total_droplet_volume: float [https://docs.python.org/3/library/functions.html#float]

	the total volume of all droplets

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
class EmulsionTimeCourse(emulsions=None, times=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

represents emulsions as a function of time

	Parameters:

	
	emulsions (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of emulsions that describe this time course

	times (list [https://docs.python.org/3/library/stdtypes.html#list]) – Times associated with the emulsions

	
append(emulsion, time=None, copy=True)

	add an emulsion to the list

	Parameters:

	
	emulsions (Emulsion) – An Emulsion instance that is added to the time course

	time (float [https://docs.python.org/3/library/functions.html#float]) – The time point associated with this emulsion

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to copy the emulsion

	emulsion (Emulsion)

	Return type:

	None

	
clear()

	removes all data stored in this instance

	Return type:

	None

	
classmethod from_file(path, progress=True)

	create emulsion time course by reading file

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path from which the data is read. This function assumes that the
data was written as an HDF5 file using to_file().

	progress (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to show the progress of the process in a progress bar

	Returns:

	an instance describing the emulsion time course

	Return type:

	EmulsionTimeCourse

	
classmethod from_storage(storage, *, num_processes=1, refine=False, progress=None, **kwargs)

	create an emulsion time course from a stored phase field

	Parameters:

	
	storage (StorageBase) – The phase fields for many time instances

	refine (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag determining whether the droplet properties should be refined
using fitting. This is a potentially slow procedure.

	num_processes (int [https://docs.python.org/3/library/functions.html#int] or "auto") – Number of processes used for the refinement. If set to “auto”, the
number of processes is choosen automatically.

	progress (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to show the progress of the process. If None, the progress is
only shown when refine is True. Progress bars are only shown for
serial calculations (where num_processes == 1).

	**kwargs – All other parameters are forwarded to the
locate_droplets().

	Returns:

	an instance describing the emulsion time course

	Return type:

	EmulsionTimeCourse

	
get_emulsion(time)

	returns the emulsion clostest to a specific time point

	Parameters:

	time (float [https://docs.python.org/3/library/functions.html#float]) – The time point

	Returns:

	Emuslion

	Return type:

	Emulsion

	
items()

	iterate over all times and emulsions, returning them in pairs

	Return type:

	Iterator [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterator][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float], Emulsion]]

	
to_file(path, info=None)

	store data in hdf5 file

The data can be read using the classmethod EmulsionTimeCourse.from_file().

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to which the data is written as an HDF5 file.

	info (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Additional data stored alongside the droplet track list

	Return type:

	None

	
tracker(interrupts=1, filename=None, *, interval=None)

	return a tracker that analyzes emulsions during simulations

	Parameters:

	
	interrupts (InterruptData) – {ARG_TRACKER_INTERRUPTS}

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – determines where the EmulsionTimeCourse data is
stored

	Return type:

	DropletTracker

droplets.image_analysis module

Functions for analyzing phase field images of emulsions.

	locate_droplets

	Locates droplets in the phase field

	refine_droplets

	Refines many droplets by fitting to phase field

	refine_droplet

	Refines droplet parameters by fitting to phase field

	get_structure_factor

	Calculates the structure factor associated with a field

	get_length_scale

	Calculates a length scale associated with a phase field

	threshold_otsu

	Find the threshold value for a bimodal histogram using the Otsu method.

	
get_length_scale(scalar_field, method='structure_factor_maximum', **kwargs)

	Calculates a length scale associated with a phase field

	Parameters:

	
	scalar_field (ScalarField) – The scalar field to analyze

	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string determining which method is used to calculate the length scale.
Valid options are structure_factor_maximum (numerically determine the
maximum in the structure factor), structure_factor_mean (calculate the
mean of the structure factor), and droplet_detection (determine the number
of droplets and estimate average separation).

	Return type:

	float [https://docs.python.org/3/library/functions.html#float] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float], Any]

Additional supported keyword arguments depend on the chosen method. For instance,
the methods involving the structure factor allow for a boolean flag full_output,
which also returns the actual structure factor. The method
structure_factor_maximum also allows for some smoothing of the radially averaged
structure factor. If the parameter smoothing is set to None the amount of
smoothing is determined automatically from the typical discretization of the
underlying grid. For the method droplet_detection, additional arguments are
forwarded to locate_droplets().

	Returns:

	The determine length scale

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	Parameters:

	
	scalar_field (ScalarField)

	method (Literal['structure_factor_mean', 'structure_factor_maximum', 'droplet_detection'])

See also

LengthScaleTracker: Tracker measuring length scales

	
get_structure_factor(scalar_field, smoothing='auto', wave_numbers='auto', add_zero=False)

	Calculates the structure factor associated with a field

Here, the structure factor is basically the power spectral density of the field
scalar_field normalized so that re-gridding or rescaling the field does not change
the result.

	Parameters:

	
	scalar_field (ScalarField) – The scalar_field being analyzed

	smoothing (float [https://docs.python.org/3/library/functions.html#float], optional) – Length scale that determines the smoothing of the radially averaged
structure factor. If omitted, the full data about the discretized
structure factor is returned. The special value auto calculates
a value automatically.

	wave_numbers (list [https://docs.python.org/3/library/stdtypes.html#list] of floats, optional) – The magnitude of the wave vectors at which the structure factor is
evaluated. This only applies when smoothing is used. If auto, the
wave numbers are determined automatically.

	add_zero (bool [https://docs.python.org/3/library/functions.html#bool]) – Determines whether the value at k=0 (defined to be 1) should also be
returned.

	Returns:

	Two arrays giving the wave numbers and the
associated structure factor. Wave numbers \(k\) are related to distances by
\(2\pi/k\).

	Return type:

	(numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray])

	
locate_droplets(phase_field, threshold=0.5, *, minimal_radius=0, modes=0, interface_width=None, refine=False, refine_args=None, num_processes=1)

	Locates droplets in the phase field

This uses a binarized image to locate clusters of large concentration in the phase
field, which are interpreted as droplets. Basic quantities, like position and size,
are determined for these clusters.

Example

To determine the position, radius, and interfacial width of an arbitrary
droplet, the following call can be used

emulsion = droplets.locate_droplets(
 field,
 threshold="auto",
 refine=True,
 refine_args={'vmin': None, 'vmax': None},
)

field is the scalar field, in which the droplets are located. The
refine_args set flexibel boundaries for the intensities inside and outside
the droplet.

	Parameters:

	
	phase_field (ScalarField) – Scalar field that describes the concentration field of droplets

	threshold (float [https://docs.python.org/3/library/functions.html#float] or str [https://docs.python.org/3/library/stdtypes.html#str]) – The threshold for binarizing the image. If a value is given it is used
directly. Otherwise, the following algorithms are supported:

	extrema: take mean between the minimum and the maximum of the data

	mean: take the mean over the entire data

	otsu: use Otsu’s method implemented in threshold_otsu()

The special value auto currently defaults to the extrema method.

	minimal_radius (float [https://docs.python.org/3/library/functions.html#float]) – The smallest radius of droplets to include in the list. This can be used to
filter out fluctuations in noisy simulations.

	modes (int [https://docs.python.org/3/library/functions.html#int]) – The number of perturbation modes that should be included. If modes=0,
droplets are assumed to be spherical. Note that the mode amplitudes are only
determined when refine=True.

	interface_width (float [https://docs.python.org/3/library/functions.html#float], optional) – Interface width of the located droplets, which is also used as a starting
value for the fitting if droplets are refined.

	refine (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag determining whether the droplet properties should be refined using
fitting. This is a potentially slow procedure.

	refine_args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Additional keyword arguments passed on to refine_droplet(). Only has
an effect if refine=True.

	num_processes (int [https://docs.python.org/3/library/functions.html#int]) – Number of processes used for the refinement. If set to “auto”, the number of
processes is choosen automatically.

	Returns:

	All detected droplets

	Return type:

	Emulsion

	
refine_droplet(phase_field, droplet, *, vmin=0.0, vmax=1.0, adjust_values=False, tolerance=None, least_squares_params=None)

	Refines droplet parameters by fitting to phase field

This function varies droplet parameters, like position, size, interface width, and
potential perturbation amplitudes until the overlap with the respective phase field
region is maximized. Here, we use a constraint fitting routine.

	Parameters:

	
	phase_field (ScalarField) – Phase_field that is being used to refine the droplet

	droplet (SphericalDroplet) – Droplet that should be refined. This could also be a subclass of
SphericalDroplet

	vmin (float [https://docs.python.org/3/library/functions.html#float]) – The intensity value of the dilute phase surrounding the droplet. If None,
the value will be determined automatically.

	vmax (float [https://docs.python.org/3/library/functions.html#float]) – The intensity value inside the droplet. If None, the value will be
determined automatically.

	adjust_value (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag determining whether the intensity values will be included in the
fitting procedure. The default value False implies that the intensity
values are regarded fixed.

	tolerance (float [https://docs.python.org/3/library/functions.html#float], optional) – Sets the three tolerance values ftol, xtol, and gtol of the
scipy.optimize.least_squares() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html#scipy.optimize.least_squares], unless they are specified in detail by
the least_squares_params argument.

	least_squares_params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of parameters that influence the fitting; see the documentation
of scipy.optimize.least_squares() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html#scipy.optimize.least_squares].

	adjust_values (bool [https://docs.python.org/3/library/functions.html#bool])

	Returns:

	The refined droplet as an instance of the argument droplet

	Return type:

	DiffuseDroplet

	
threshold_otsu(data, nbins=256)

	Find the threshold value for a bimodal histogram using the Otsu method.

If you have a distribution that is bimodal, i.e., with two peaks and a valley
between them, then you can use this to find the location of that valley, which
splits the distribution into two.

	Parameters:

	
	data (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The data to be analyzed

	nbins (int [https://docs.python.org/3/library/functions.html#int]) – The number of bins in the histogram, which defines the accuracy of the
determined threshold.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

Modified from https://stackoverflow.com/a/71345917/932593, which is based on the
the SciKit Image threshold_otsu implementation:
https://github.com/scikit-image/scikit-image/blob/70fa904eee9ef370c824427798302551df57afa1/skimage/filters/thresholding.py#L312

droplets.trackers module

Module defining classes for tracking droplets in simulations.

	LengthScaleTracker

	Tracker that stores length scales measured in simulations

	DropletTracker

	Detect droplets in a scalar field during simulations

	
class DropletTracker(interrupts=1, filename=None, *, emulsion_timecourse=None, source=None, threshold=0.5, minimal_radius=0, refine=False, refine_args=None, perturbation_modes=0, interval=None)

	Bases: TrackerBase

Detect droplets in a scalar field during simulations

This tracker is useful when only the parameters of actual droplets are needed, since
it stores considerably less information compared to the full scalar field.
The file written when filename is supplied can be read in later using
from_file().

	
data

	Contains the data of the tracked droplets after the simulation is done.

	Type:

	EmulsionTimeCourse

Example

To track droplets and determine their position, radii, and interfacial
widths, the following tracker can be used

droplet_tracker = DropletTracker(
 1, refine=True, refine_args={'vmin': None, 'vmax': None}
)

field is the scalar field, in which the droplets are located. The
refine_args set flexibel boundaries for the intensities inside and outside
the droplet.

	Parameters:

	
	interrupts (InterruptData) – Determines when the tracker interrupts the simulation. A single
numbers determines an interval (measured in the simulation time
unit) of regular interruption. A string is interpreted as a
duration in real time assuming the format ‘hh:mm:ss’. A list of
numbers is taken as explicit simulation time points. More fine-
grained contol is possible by passing an instance of classes
defined in interrupts.

	filename (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Determines the path to the HDF5 file to which the
EmulsionTimeCourse data is written.

	emulsion_timecourse (EmulsionTimeCourse, optional) – Can be an instance of EmulsionTimeCourse
that is used to store the data. If omitted, an empty class is initiated.

	source (int [https://docs.python.org/3/library/functions.html#int] or callable, optional) – Determines how a field is extracted from fields. If None, fields
is passed as is, assuming it is already a scalar field. This works for
the simple, standard case where only a single ScalarField is treated.
Alternatively, source can be an integer, indicating which field is
extracted from an instance of FieldCollection.
Lastly, source can be a function that takes fields as an argument
and returns the desired field.

	threshold (float [https://docs.python.org/3/library/functions.html#float] or str [https://docs.python.org/3/library/stdtypes.html#str]) – The threshold for binarizing the image. If a value is given it is used
directly. Otherwise, the following algorithms are supported:

	extrema: take mean between the minimum and the maximum of the data

	mean: take the mean over the entire data

	otsu: use Otsu’s method implemented in threshold_otsu()

The special value auto currently defaults to the extrema method.

	minimal_radius (float [https://docs.python.org/3/library/functions.html#float]) – Minimal radius of droplets that will be retained.

	refine (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag determining whether the droplet coordinates should be
refined using fitting. This is a potentially slow procedure.

	refine_args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Additional keyword arguments passed on to refine_droplet(). Only
has an effect if refine=True.

	perturbation_modes (int [https://docs.python.org/3/library/functions.html#int]) – An option describing how many perturbation modes should be considered
when refining droplets. Only has an effect if refine=True.

	
finalize(info=None)

	finalize the tracker, supplying additional information

	Parameters:

	info (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Extra information from the simulation

	Return type:

	None

	
handle(field, t)

	handle data supplied to this tracker

	Parameters:

	
	field (FieldBase) – The current state of the simulation

	t (float [https://docs.python.org/3/library/functions.html#float]) – The associated time

	Return type:

	None

	
class LengthScaleTracker(interrupts=1, filename=None, *, method='structure_factor_mean', source=None, verbose=False, interval=None)

	Bases: TrackerBase

Tracker that stores length scales measured in simulations

	
times

	The time points at which the length scales are stored

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
length_scales

	The associated length scales

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Parameters:

	
	interrupts (InterruptData) – {ARG_TRACKER_INTERRUPTS}

	filename (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Determines the file to which the data is written in JSON format

	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – Method used for determining the length scale. Details are explained in
the function get_length_scale().

	source (int [https://docs.python.org/3/library/functions.html#int] or callable, optional) – Determines how a field is extracted from fields. If None, fields
is passed as is, assuming it is already a scalar field. This works for
the simple, standard case where only a single
ScalarField is treated. Alternatively,
source can be an integer, indicating which field is extracted from an
instance of FieldCollection. Lastly,
source can be a function that takes fields as an argument and
returns the desired field.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – Determines whether errors in determining the length scales are logged.

	
finalize(info=None)

	finalize the tracker, supplying additional information

	Parameters:

	info (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Extra information from the simulation

	Return type:

	None

	
handle(field, t)

	handle data supplied to this tracker

	Parameters:

	
	field (FieldBase) – The current state of the simulation

	t (float [https://docs.python.org/3/library/functions.html#float]) – The associated time

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 droplets	

 	
 	
 droplets.droplet_tracks	

 	
 	
 droplets.droplets	

 	
 	
 droplets.emulsions	

 	
 	
 droplets.image_analysis	

 	
 	
 droplets.tools	

 	
 	
 droplets.tools.spherical	

 	
 	
 droplets.trackers	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | V

A

 	
 	append() (DropletTrack method)

 	(Emulsion method)

 	(EmulsionTimeCourse method)

B

 	
 	bbox (Emulsion property)

 	(SphericalDroplet property)

C

 	
 	check_data() (PerturbedDroplet3DAxisSym method)

 	(SphericalDroplet method)

 	
 	clear() (EmulsionTimeCourse method)

 	copy() (Emulsion method)

D

 	
 	data (DiffuseDroplet attribute)

 	(DropletTrack property)

 	(DropletTracker attribute)

 	(Emulsion property)

 	(PerturbedDroplet2D attribute)

 	(PerturbedDroplet3D attribute)

 	(PerturbedDroplet3DAxisSym attribute)

 	(SphericalDroplet attribute)

 	data_bounds (DiffuseDroplet property)

 	(SphericalDroplet property)

 	DiffuseDroplet (class in droplets.droplets)

 	dim (DropletTrack property)

 	(Emulsion property)

 	(PerturbedDroplet2D attribute)

 	(PerturbedDroplet3D attribute)

 	(PerturbedDroplet3DAxisSym attribute)

 	(SphericalDroplet property)

 	
 droplets

 	module

 	
 	
 droplets.droplet_tracks

 	module

 	
 droplets.droplets

 	module

 	
 droplets.emulsions

 	module

 	
 droplets.image_analysis

 	module

 	
 droplets.tools

 	module

 	
 droplets.tools.spherical

 	module

 	
 droplets.trackers

 	module

 	DropletTrack (class in droplets.droplet_tracks)

 	DropletTracker (class in droplets.trackers)

 	DropletTrackList (class in droplets.droplet_tracks)

 	duration (DropletTrack property)

E

 	
 	empty() (Emulsion class method)

 	Emulsion (class in droplets.emulsions)

 	EmulsionTimeCourse (class in droplets.emulsions)

 	
 	end (DropletTrack property)

 	
 environment variable

 	PYTHONPATH

 	extend() (Emulsion method)

F

 	
 	finalize() (DropletTracker method)

 	(LengthScaleTracker method)

 	first (DropletTrack property)

 	from_emulsion_time_course() (DropletTrackList class method)

 	from_file() (DropletTrack class method)

 	(DropletTrackList class method)

 	(Emulsion class method)

 	(EmulsionTimeCourse class method)

 	
 	from_random() (Emulsion class method)

 	from_storage() (DropletTrackList class method)

 	(EmulsionTimeCourse class method)

 	from_volume() (SphericalDroplet class method)

G

 	
 	get_dtype() (DiffuseDroplet class method)

 	(SphericalDroplet class method)

 	get_emulsion() (EmulsionTimeCourse method)

 	get_length_scale() (in module droplets.image_analysis)

 	get_linked_data() (Emulsion method)

 	get_neighbor_distances() (Emulsion method)

 	get_pairwise_distances() (Emulsion method)

 	get_phase_field() (SphericalDroplet method)

 	
 	get_phasefield() (Emulsion method)

 	get_position() (DropletTrack method)

 	get_radii() (DropletTrack method)

 	get_size_statistics() (Emulsion method)

 	get_structure_factor() (in module droplets.image_analysis)

 	get_trajectory() (DropletTrack method)

 	get_triangulation() (SphericalDroplet method)

 	get_volumes() (DropletTrack method)

H

 	
 	handle() (DropletTracker method)

 	(LengthScaleTracker method)

I

 	
 	interface_curvature (SphericalDroplet property)

 	interface_curvature() (PerturbedDroplet2D method)

 	(PerturbedDroplet3D method)

 	(PerturbedDroplet3DAxisSym method)

 	interface_distance() (PerturbedDroplet2D method)

 	(PerturbedDroplet3D method)

 	(PerturbedDroplet3DAxisSym method)

 	
 	interface_position() (PerturbedDroplet2D method)

 	(PerturbedDroplet3D method)

 	(SphericalDroplet method)

 	interface_width (DiffuseDroplet property)

 	(Emulsion property)

 	items() (DropletTrack method)

 	(EmulsionTimeCourse method)

L

 	
 	last (DropletTrack property)

 	length_scales (LengthScaleTracker attribute)

 	
 	LengthScaleTracker (class in droplets.trackers)

 	locate_droplets() (in module droplets.image_analysis)

M

 	
 	make_radius_from_volume_compiled() (in module droplets.tools.spherical)

 	make_radius_from_volume_nd_compiled() (in module droplets.tools.spherical)

 	make_surface_from_radius_compiled() (in module droplets.tools.spherical)

 	make_volume_from_radius_compiled() (in module droplets.tools.spherical)

 	make_volume_from_radius_nd_compiled() (in module droplets.tools.spherical)

 	
 module

 	droplets

 	droplets.droplet_tracks

 	droplets.droplets

 	droplets.emulsions

 	droplets.image_analysis

 	droplets.tools

 	droplets.tools.spherical

 	droplets.trackers

O

 	
 	overlaps() (SphericalDroplet method)

P

 	
 	PerturbedDroplet2D (class in droplets.droplets)

 	PerturbedDroplet3D (class in droplets.droplets)

 	PerturbedDroplet3DAxisSym (class in droplets.droplets)

 	plot() (DropletTrack method)

 	(DropletTrackList method)

 	(Emulsion method)

 	(SphericalDroplet method)

 	
 	plot_positions() (DropletTrack method)

 	(DropletTrackList method)

 	points_cartesian_to_spherical() (in module droplets.tools.spherical)

 	points_spherical_to_cartesian() (in module droplets.tools.spherical)

 	polar_coordinates() (in module droplets.tools.spherical)

 	position (SphericalDroplet property)

 	PYTHONPATH

R

 	
 	radius (SphericalDroplet property)

 	radius_from_surface() (in module droplets.tools.spherical)

 	radius_from_volume() (in module droplets.tools.spherical)

 	
 	refine_droplet() (in module droplets.image_analysis)

 	remove_overlapping() (Emulsion method)

 	remove_short_tracks() (DropletTrackList method)

 	remove_small() (Emulsion method)

S

 	
 	spherical_harmonic_real() (in module droplets.tools.spherical)

 	spherical_harmonic_real_k() (in module droplets.tools.spherical)

 	spherical_harmonic_symmetric() (in module droplets.tools.spherical)

 	spherical_index_count() (in module droplets.tools.spherical)

 	spherical_index_count_optimal() (in module droplets.tools.spherical)

 	spherical_index_k() (in module droplets.tools.spherical)

 	
 	spherical_index_lm() (in module droplets.tools.spherical)

 	SphericalDroplet (class in droplets.droplets)

 	start (DropletTrack property)

 	surface_area (PerturbedDroplet2D property)

 	(SphericalDroplet property)

 	surface_area_approx (PerturbedDroplet2D property)

 	surface_from_radius() (in module droplets.tools.spherical)

T

 	
 	threshold_otsu() (in module droplets.image_analysis)

 	time_overlaps() (DropletTrack method)

 	times (LengthScaleTracker attribute)

 	to_file() (DropletTrack method)

 	(DropletTrackList method)

 	(Emulsion method)

 	(EmulsionTimeCourse method)

 	
 	total_droplet_volume (Emulsion property)

 	tracker() (EmulsionTimeCourse method)

V

 	
 	volume (PerturbedDroplet2D property)

 	(PerturbedDroplet3D property)

 	(SphericalDroplet property)

 	
 	volume_approx (PerturbedDroplet3D property)

 	(PerturbedDroplet3DAxisSym property)

 from pathlib import Path

from pde.fields import ScalarField

from droplets.image_analysis import locate_droplets

img_path = Path(__file__).parent / "resources" / "emulsion.png"
field = ScalarField.from_image(img_path)
emulsion = locate_droplets(field)

visualize the result
emulsion.plot(field=field, fill=False, color="w")

 from pde import CahnHilliardPDE, ScalarField, UnitGrid

from droplets.emulsions import EmulsionTimeCourse

field = ScalarField.random_uniform(UnitGrid([32, 32]), -1, 1)
pde = CahnHilliardPDE()

etc = EmulsionTimeCourse()
pde.solve(field, t_range=10, backend="numpy", tracker=etc.tracker())

print(etc[-1].get_size_statistics())

 from droplets import DiffuseDroplet, Emulsion, SphericalDroplet

construct two droplets
drop1 = SphericalDroplet(position=[0, 0], radius=2)
drop2 = DiffuseDroplet(position=[6, 8], radius=3, interface_width=1)

check whether they overlap
print(drop1.overlaps(drop2)) # prints False

construct an emulsion and query it
e = Emulsion([drop1, drop2])
e.get_size_statistics()

 import numpy as np

from droplets import DiffuseDroplet, Emulsion

create 10 random droplets
droplets = [
 DiffuseDroplet(
 position=np.random.uniform(0, 100, 2),
 radius=np.random.uniform(5, 10),
 interface_width=1,
)
 for _ in range(10)
]

remove overlapping droplets in emulsion and plot it
emulsion = Emulsion(droplets)
emulsion.remove_overlapping()
emulsion.plot()

 import numpy as np

from droplets import DiffuseDroplet, Emulsion

create 10 random droplets
droplets = [
 DiffuseDroplet(
 position=np.random.uniform(0, 100, 2),
 radius=np.random.uniform(5, 10),
 interface_width=1,
)
 for _ in range(10)
]

remove overlapping droplets in emulsion and plot it
emulsion = Emulsion(droplets)
emulsion.remove_overlapping()
emulsion.plot(color_value=lambda droplet: droplet.radius, colorbar="Droplet radius")

droplets

	droplets package
	Subpackages
	droplets.tools package
	droplets.tools.spherical module

	droplets.droplet_tracks module

	droplets.droplets module

	droplets.emulsions module

	droplets.image_analysis module

	droplets.trackers module

 _static/minus.png

_static/plus.png

_static/file.png

_images/inheritance-5288f12fb70eb36e3625e75a0d4aed7ae5b41bc9.png
PerturbedDroplet2D

DropletBase

SphericalDroplet

DiffuseDroplet

Perubedoropletsose |

PerturbedDropletsD

PerturbedDroplet3DAXisSym

nav.xhtml

 Table of Contents

 		
 ‘py-droplets’ python package

 		
 Installation

 		
 Installing from source

 		
 Prerequisites

 		
 Downloading the package

 		
 Getting started

 		
 Examples

 		
 Basic droplets

 		
 Plotting emulsions

 		
 Analyze images

 		
 Contributing code

 		
 Structure of the package

 		
 Extending functionality

 		
 Coding style

 		
 Running unit tests

 		
 droplets package

 		
 Subpackages

 		
 droplets.tools package

 		
 droplets.droplet_tracks module

 		
 droplets.droplets module

 		
 droplets.emulsions module

 		
 droplets.image_analysis module

 		
 droplets.trackers module

_images/emulsion.png

